Approximating the stationary probability of a state in a Markov chain through Markov chain Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require tilde{O}(tau/pi(v)) operations to approximate the probability pi(v) of a state v in a chain with mixing time tau, and even the best available techniques still have complexity tilde{O}(tau^1.5 / pi(v)^0.5); and since these complexities depend inversely on pi(v), they can grow beyond any bound in the size of the chain or in its mixing time. In this paper we show that, for time-reversible Markov chains, there exists a simple randomized approximation algorithm that breaks this "small-pi(v) barrier".
On approximating the stationary distribution of time-reversible Markov chains
Peserico, Enoch;Pretto, Luca
2018
Abstract
Approximating the stationary probability of a state in a Markov chain through Markov chain Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require tilde{O}(tau/pi(v)) operations to approximate the probability pi(v) of a state v in a chain with mixing time tau, and even the best available techniques still have complexity tilde{O}(tau^1.5 / pi(v)^0.5); and since these complexities depend inversely on pi(v), they can grow beyond any bound in the size of the chain or in its mixing time. In this paper we show that, for time-reversible Markov chains, there exists a simple randomized approximation algorithm that breaks this "small-pi(v) barrier".Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.