We investigate the notion of the so-called Double Ball Property, which concerns the nonnegative sub-solutions of some differential operators. Thanks to the axiomatic approach developed in [6], this is an important tool in order to solve the Krylov-Safonov's Harnack inequality problem for this kind of operators. In particular, we are interested in linear second order horizontally-elliptic operators in non-divergence formand with measurable coefficients. In the setting of homogeneous Carnot groups, we would like to stress the relation between the Double Ball Property and a kind of solvability of the Dirichlet problem for the operator in the exterior of some homogeneous balls. We present a recent result obtained in [15], where the double ball property has been proved in a generic Carnot group of step two.

Double ball property: an overview and the case of step two Carnot groups

Giulio Tralli
2012

Abstract

We investigate the notion of the so-called Double Ball Property, which concerns the nonnegative sub-solutions of some differential operators. Thanks to the axiomatic approach developed in [6], this is an important tool in order to solve the Krylov-Safonov's Harnack inequality problem for this kind of operators. In particular, we are interested in linear second order horizontally-elliptic operators in non-divergence formand with measurable coefficients. In the setting of homogeneous Carnot groups, we would like to stress the relation between the Double Ball Property and a kind of solvability of the Dirichlet problem for the operator in the exterior of some homogeneous balls. We present a recent result obtained in [15], where the double ball property has been proved in a generic Carnot group of step two.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3299634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact