Let L be a linear second order horizontally elliptic operator on a Carnot group of step two. We assume L in non-divergence form and with measurable coefficients. Then, we prove the Double Ball Property for the nonnegative sub-solutions of L. With our result, in order to solve the Harnack inequality problem for this kind of operators, it becomes sufficient to prove the so called ε-Critical Density.

Double Ball Property for non-divergence horizontally elliptic operators on step two Carnot groups

Giulio Tralli
2012

Abstract

Let L be a linear second order horizontally elliptic operator on a Carnot group of step two. We assume L in non-divergence form and with measurable coefficients. Then, we prove the Double Ball Property for the nonnegative sub-solutions of L. With our result, in order to solve the Harnack inequality problem for this kind of operators, it becomes sufficient to prove the so called ε-Critical Density.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3299632
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact