Prefrontal brain regions have been proposed to modulate vagally mediated heart rate variability (HRV) through their action on subcortical structures. This study aimed at investigating the beat-to-beat influence of the brain cortex over the heart through a high temporal resolution estimation of brain-heart coupling. Electrocardiogram (ECG) and electroencephalogram (EEG) from 32 scalp positions were recorded at rest for 5 min in 38 participants. To assess beat-to-beat cortical control on vagal activity, the longest and shortest inter-beat intervals (IBIs) were identified for each participant. Then, the EEG activity was time-locked to R waves in the ECG signal and analyzed using a time-frequency approach. Logistic regression models were applied to predict the trial-by-trial occurrence of long and short IBIs from cardiac-related EEG activity. Delta power reduction over prefrontal and frontocentral areas preceding the R-wave increased the probability for a long IBI to occur, as compared to a short one. Moreover, reduced prefrontal delta power preceding the R wave was correlated to higher cardiac vagal control, as reflected by the High Frequency (HF) power of HRV calculated on the whole recording time. The present results support the hypothesis that phasic activation/deactivation of prefrontal areas modulates vagal control of heart rate at rest.
The frontal cortex is a heart-brake: Reduction in delta oscillations is associated with heart rate deceleration
Patron, Elisabetta
;Messerotti Benvenuti, Simone;
2019
Abstract
Prefrontal brain regions have been proposed to modulate vagally mediated heart rate variability (HRV) through their action on subcortical structures. This study aimed at investigating the beat-to-beat influence of the brain cortex over the heart through a high temporal resolution estimation of brain-heart coupling. Electrocardiogram (ECG) and electroencephalogram (EEG) from 32 scalp positions were recorded at rest for 5 min in 38 participants. To assess beat-to-beat cortical control on vagal activity, the longest and shortest inter-beat intervals (IBIs) were identified for each participant. Then, the EEG activity was time-locked to R waves in the ECG signal and analyzed using a time-frequency approach. Logistic regression models were applied to predict the trial-by-trial occurrence of long and short IBIs from cardiac-related EEG activity. Delta power reduction over prefrontal and frontocentral areas preceding the R-wave increased the probability for a long IBI to occur, as compared to a short one. Moreover, reduced prefrontal delta power preceding the R wave was correlated to higher cardiac vagal control, as reflected by the High Frequency (HF) power of HRV calculated on the whole recording time. The present results support the hypothesis that phasic activation/deactivation of prefrontal areas modulates vagal control of heart rate at rest.File | Dimensione | Formato | |
---|---|---|---|
Patron et al_NIMG.pdf
accesso aperto
Descrizione: Patron et al_NIMG
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
522.79 kB
Formato
Adobe PDF
|
522.79 kB | Adobe PDF | Visualizza/Apri |
Patron et al., 2019_NeuroIm.pdf
Accesso riservato
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
847.46 kB
Formato
Adobe PDF
|
847.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.