The molecular adsorbent recycling system (MARS) is now widely used in the treatment of patients with hepatic failure (HF). A great deal of interest has been directed toward its effect on clinical outcome, whereas its depurative capacity also needs attention. Bilirubin, a tightly albumin-bound toxin accumulating in patients with HF, is regarded as a surrogate to evaluate the depurative capacity of albumin-bound toxins by blood purification modalities. The removal of bilirubin by MARS is difficult to predict, because both the clearance of bilirubin and the reduction ratio of bilirubin after a single session differ between patients and sessions. A reduction of depurative capacity over the course of a treatment is observed. Furthermore, the later sessions are likely less efficient than previous ones. It cannot be taken for granted that the reduction of depurative capacity is due to the saturation and reduced efficiency of the adsorbent columns used in MAPS. The answer lies in the property of bilirubin/albumin binding. The removal of bilirubin by MARS is a diffusion process, dependent on the free bilirubin concentration. Bilirubin binds to albumin in 3 ways with different affinity. High-affinity binding bilirubin is difficult to dissociate from albumin and is accompanied by a smaller free fraction, which means it is also difficult for MARS to remove. The factors affecting the free fraction of bilirubin will impact on bilirubin removal by MARS. Among them, the molar ratio of bilinibin to albumin is the most important one. Other factors include the interaction of other agents with bilirubin/albumin binding, the albumin concentration, plasma ion strength, and pH. (Int J Artif Organs 2008, 31: 875-81)

Depurative capacity of molecular adsorbent recycling system (MARS): A focus on bilirubin removal

Ronco C
2008

Abstract

The molecular adsorbent recycling system (MARS) is now widely used in the treatment of patients with hepatic failure (HF). A great deal of interest has been directed toward its effect on clinical outcome, whereas its depurative capacity also needs attention. Bilirubin, a tightly albumin-bound toxin accumulating in patients with HF, is regarded as a surrogate to evaluate the depurative capacity of albumin-bound toxins by blood purification modalities. The removal of bilirubin by MARS is difficult to predict, because both the clearance of bilirubin and the reduction ratio of bilirubin after a single session differ between patients and sessions. A reduction of depurative capacity over the course of a treatment is observed. Furthermore, the later sessions are likely less efficient than previous ones. It cannot be taken for granted that the reduction of depurative capacity is due to the saturation and reduced efficiency of the adsorbent columns used in MAPS. The answer lies in the property of bilirubin/albumin binding. The removal of bilirubin by MARS is a diffusion process, dependent on the free bilirubin concentration. Bilirubin binds to albumin in 3 ways with different affinity. High-affinity binding bilirubin is difficult to dissociate from albumin and is accompanied by a smaller free fraction, which means it is also difficult for MARS to remove. The factors affecting the free fraction of bilirubin will impact on bilirubin removal by MARS. Among them, the molar ratio of bilinibin to albumin is the most important one. Other factors include the interaction of other agents with bilirubin/albumin binding, the albumin concentration, plasma ion strength, and pH. (Int J Artif Organs 2008, 31: 875-81)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3293647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact