We show that Lasserre measure-based hierarchies for polynomial optimization can be implemented by directly computing the discrete minimum at a suitable set of algebraic quadrature nodes. The sampling cardinality can be much lower than in other approaches based on grids or norming meshes. All the vast literature on multivariate algebraic quadrature becomes in such a way relevant to polynomial optimization

Quadrature-based polynomial optimization

Martinez, Angeles;Piazzon, Federico;Sommariva, Alvise;Vianello, Marco
2020

Abstract

We show that Lasserre measure-based hierarchies for polynomial optimization can be implemented by directly computing the discrete minimum at a suitable set of algebraic quadrature nodes. The sampling cardinality can be much lower than in other approaches based on grids or norming meshes. All the vast literature on multivariate algebraic quadrature becomes in such a way relevant to polynomial optimization
File in questo prodotto:
File Dimensione Formato  
qbased.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 507.45 kB
Formato Adobe PDF
507.45 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3292611
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact