Let g be a finite dimensional simple Lie algebra over an algebraically closed field K of characteristic 0. A linear map ϕ : g → g is called a local automorphism if for every x in g there is an automorphism ϕ_x of g such that ϕ(x) = ϕ_x(x). We prove that a linear map ϕ : g → g is local automorphism if and only if it is an automorphism or an anti-automorphism.

Local automorphisms of finite dimensional simple Lie algebras

Costantini, Mauro
2019

Abstract

Let g be a finite dimensional simple Lie algebra over an algebraically closed field K of characteristic 0. A linear map ϕ : g → g is called a local automorphism if for every x in g there is an automorphism ϕ_x of g such that ϕ(x) = ϕ_x(x). We prove that a linear map ϕ : g → g is local automorphism if and only if it is an automorphism or an anti-automorphism.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3290487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact