Natural and semi-synthetic compounds are being studied as novel phosphodiesterase 5 (PDE5) inhibitors for the treatment of erectile dysfunction, pulmonary hypertension, and lower urinary symptoms. Maclura pomifera is a source of flavonoids, one of the main classes of molecules investigated for these purposes. The extraction of the natural isoflavone osajin and its modification to obtain a semi-synthetic derivative are described in this short note. 1H and 13C-nuclear magnetic resonance spectroscopy (NMR), mass spectrometry, high-performance liquid chromatography (HPLC) and spectroscopic characterization of the title compound are also hereby provided. Two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY) NMR, supported by in silico conformational studies, was used to achieve a complete assignment of the proton signals, assessing the correct chemical structure of the compound. Heteronuclear single quantum coherence spectroscopy (HSQC) and heteronuclear multiple bond correlation (HMBC) NMR experiments were performed to assign 13C chemical shifts. Calculated chemical properties and preliminary in silico docking suggest that this molecule might be a promising candidate as PDE5 inhibitor.

5-Hydroxy-3-(4-hydroxyphenyl)-8,8-dimethyl-6- (3-methylbut-2-enyl)pyrano[2,3-h]chromen-4-one

Ribaudo, Giovanni;Zagotto, Giuseppe
2018

Abstract

Natural and semi-synthetic compounds are being studied as novel phosphodiesterase 5 (PDE5) inhibitors for the treatment of erectile dysfunction, pulmonary hypertension, and lower urinary symptoms. Maclura pomifera is a source of flavonoids, one of the main classes of molecules investigated for these purposes. The extraction of the natural isoflavone osajin and its modification to obtain a semi-synthetic derivative are described in this short note. 1H and 13C-nuclear magnetic resonance spectroscopy (NMR), mass spectrometry, high-performance liquid chromatography (HPLC) and spectroscopic characterization of the title compound are also hereby provided. Two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY) NMR, supported by in silico conformational studies, was used to achieve a complete assignment of the proton signals, assessing the correct chemical structure of the compound. Heteronuclear single quantum coherence spectroscopy (HSQC) and heteronuclear multiple bond correlation (HMBC) NMR experiments were performed to assign 13C chemical shifts. Calculated chemical properties and preliminary in silico docking suggest that this molecule might be a promising candidate as PDE5 inhibitor.
2018
File in questo prodotto:
File Dimensione Formato  
molbank-2018-M1004.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 777.06 kB
Formato Adobe PDF
777.06 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3286626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact