Biogas technology is an important renewable bioenergy producer. The biogas generating process needs to be optimized to minimise the energy consumption due to the stirring of biomass slurry. Numerical simulations and laboratory experiments are economically and practically preferred over investigations of industrial scale biogas plants. Additionally, a strategic approach to model the reality in scientific laboratories is to use a rheological valid artificial chemical substrate to replace real biomass. The proposes of this study were (i) to investigate the mixing process in a 1:12 scaled-down home-made laboratory digester filled with a 0.3 wt% water-cellulose solution, (ii) to simulate the mixing process in the laboratory-scale digester using a computational fluid dynamics model, (iii) to validate the model by comparison of the simulation with laboratory experiments results obtained on the laboratory digester. Optical and acoustic measurements on the flow velocity inside the digester during the mixing process of the water-cellulose solutions indicate that the model based on computational fluid dynamics is valid. The data are presented and discussed in the paper.

Effect of mixing of waste biomass in anaerobic digesters for production of biogas

Conti Fosca
;
2018

Abstract

Biogas technology is an important renewable bioenergy producer. The biogas generating process needs to be optimized to minimise the energy consumption due to the stirring of biomass slurry. Numerical simulations and laboratory experiments are economically and practically preferred over investigations of industrial scale biogas plants. Additionally, a strategic approach to model the reality in scientific laboratories is to use a rheological valid artificial chemical substrate to replace real biomass. The proposes of this study were (i) to investigate the mixing process in a 1:12 scaled-down home-made laboratory digester filled with a 0.3 wt% water-cellulose solution, (ii) to simulate the mixing process in the laboratory-scale digester using a computational fluid dynamics model, (iii) to validate the model by comparison of the simulation with laboratory experiments results obtained on the laboratory digester. Optical and acoustic measurements on the flow velocity inside the digester during the mixing process of the water-cellulose solutions indicate that the model based on computational fluid dynamics is valid. The data are presented and discussed in the paper.
2018
IOP Conference Series: Materials Sciences and Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3285851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact