We study the spectral stability of two fourth order Steklov problems upon domain perturba- tion. One of the two problems is the classical DBS—Dirichlet Biharmonic Steklov—problem, the other one is a variant. Under a comparatively weak condition on the convergence of the domains, we prove the stability of the resolvent operators for both problems, which implies the stability of eigenvalues and eigenfunctions. The stability estimates for the eigenfunctions are expressed in terms of the strong H2-norms. The analysis is carried out without assuming that the domains are star-shaped. Our condition turns out to be sharp at least for the variant of the DBS problem. In the case of the DBS problem, we prove stability of a suitable Dirichlet- to-Neumann type map under very weak conditions on the convergence of the domains and we formulate an open problem. As bypass product of our analysis, we provide some stability and instability results for Navier and Navier-type boundary value problems for the biharmonic operator.
Spectral stability for a class of fourth order Steklov problems under domain perturbations
Lamberti, Pier Domenico
2019
Abstract
We study the spectral stability of two fourth order Steklov problems upon domain perturba- tion. One of the two problems is the classical DBS—Dirichlet Biharmonic Steklov—problem, the other one is a variant. Under a comparatively weak condition on the convergence of the domains, we prove the stability of the resolvent operators for both problems, which implies the stability of eigenvalues and eigenfunctions. The stability estimates for the eigenfunctions are expressed in terms of the strong H2-norms. The analysis is carried out without assuming that the domains are star-shaped. Our condition turns out to be sharp at least for the variant of the DBS problem. In the case of the DBS problem, we prove stability of a suitable Dirichlet- to-Neumann type map under very weak conditions on the convergence of the domains and we formulate an open problem. As bypass product of our analysis, we provide some stability and instability results for Navier and Navier-type boundary value problems for the biharmonic operator.File | Dimensione | Formato | |
---|---|---|---|
Ferrero-Lamberti-CalcVarPDE-Postprint.pdf
accesso aperto
Descrizione: Articolo nella versione postprint
Tipologia:
Postprint (accepted version)
Licenza:
Accesso gratuito
Dimensione
462.78 kB
Formato
Adobe PDF
|
462.78 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.