Nanostructured materials based on ZnO, eventually functionalized with titanium oxide (TiO2) or tungsten oxide (WO3), were fabricated on fluorine-doped tin oxide-coated glass substrates by a combined chemical vapor deposition/radio frequency-sputtering route. In particular, the present work focuses on the use of x-ray photoelectron and x-ray excited Auger electron spectroscopies for a detailed investigation of the system O 1s, Zn 2p3/2, Zn 3p, and Zn LMM core levels, as well as Ti 2p and W 4f photoelectron peaks. In a nutshell, the results of these analyses highlight the obtainment of pure ZnO nanodeposits, as well as of ZnO-TiO2 and ZnO-WO3 composites, in which the identity of each component is preserved, and the occurrence of an electronic interplay between ZnO and WO3 phases in the latter system.
ZnO-based nanocomposites prepared by a vapor phase route, investigated by XPS
Bigiani, Lorenzo
;Gasparotto, Alberto
;Carraro, Giorgio;Maccato, Chiara;Barreca, Davide
2018
Abstract
Nanostructured materials based on ZnO, eventually functionalized with titanium oxide (TiO2) or tungsten oxide (WO3), were fabricated on fluorine-doped tin oxide-coated glass substrates by a combined chemical vapor deposition/radio frequency-sputtering route. In particular, the present work focuses on the use of x-ray photoelectron and x-ray excited Auger electron spectroscopies for a detailed investigation of the system O 1s, Zn 2p3/2, Zn 3p, and Zn LMM core levels, as well as Ti 2p and W 4f photoelectron peaks. In a nutshell, the results of these analyses highlight the obtainment of pure ZnO nanodeposits, as well as of ZnO-TiO2 and ZnO-WO3 composites, in which the identity of each component is preserved, and the occurrence of an electronic interplay between ZnO and WO3 phases in the latter system.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.