The interpretation of the experimental data collected by testing systems across input datasets and model parameters is of strategic importance for system design and implementation. In particular, finding relationships between variables and detecting the latent variables affecting retrieval performance can provide designers, engineers and experimenters with useful if not necessary information about how a system is performing. This paper discusses the use of Structural Equation Modeling (SEM) in providing an in-depth explanation of evaluation results and an explanation of failures and successes of a system; in particular, we focus on the case of evaluation of Information Retrieval systems.
Evaluation of information retrieval systems using structural equation modeling
massimo melucci;adriano paggiaro
2019
Abstract
The interpretation of the experimental data collected by testing systems across input datasets and model parameters is of strategic importance for system design and implementation. In particular, finding relationships between variables and detecting the latent variables affecting retrieval performance can provide designers, engineers and experimenters with useful if not necessary information about how a system is performing. This paper discusses the use of Structural Equation Modeling (SEM) in providing an in-depth explanation of evaluation results and an explanation of failures and successes of a system; in particular, we focus on the case of evaluation of Information Retrieval systems.File | Dimensione | Formato | |
---|---|---|---|
article.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso gratuito
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.