We continue our work on averages for ternary additive problems with powers of prime numbers in short intervals by computing the average number of representations of a positive integer $n$ as $p_1^{k_1} + p_2^{k_2} + p_3^{k_3}$, where $p_1$, $p_2$ and $p_3$ are prime numbers and $2 le k_1 le k_2 le k_3$ are natural numbers.

On an average ternary problem with prime powers

Alessandro Languasco;
2020

Abstract

We continue our work on averages for ternary additive problems with powers of prime numbers in short intervals by computing the average number of representations of a positive integer $n$ as $p_1^{k_1} + p_2^{k_2} + p_3^{k_3}$, where $p_1$, $p_2$ and $p_3$ are prime numbers and $2 le k_1 le k_2 le k_3$ are natural numbers.
File in questo prodotto:
File Dimensione Formato  
s11139-019-00237-x.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 294.72 kB
Formato Adobe PDF
294.72 kB Adobe PDF Visualizza/Apri   Richiedi una copia
1810.03020v1.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 125.75 kB
Formato Adobe PDF
125.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3280712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact