We continue our work on averages for ternary additive problems with powers of prime numbers in short intervals by computing the average number of representations of a positive integer $n$ as $p_1^{k_1} + p_2^{k_2} + p_3^{k_3}$, where $p_1$, $p_2$ and $p_3$ are prime numbers and $2 le k_1 le k_2 le k_3$ are natural numbers.
On an average ternary problem with prime powers
Alessandro Languasco;
2020
Abstract
We continue our work on averages for ternary additive problems with powers of prime numbers in short intervals by computing the average number of representations of a positive integer $n$ as $p_1^{k_1} + p_2^{k_2} + p_3^{k_3}$, where $p_1$, $p_2$ and $p_3$ are prime numbers and $2 le k_1 le k_2 le k_3$ are natural numbers.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s11139-019-00237-x.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
294.72 kB
Formato
Adobe PDF
|
294.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1810.03020v1.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Altro
Dimensione
125.75 kB
Formato
Adobe PDF
|
125.75 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.