We compare discrete-time quantum walks on graphs to their natural classical equivalents, which we argue are lifted Markov chains (LMCs), that is, classical Markov chains with added memory. We show that LMCs can simulate the mixing behavior of any quantum walk, under a commonly satisfied invariance condition. This allows us to answer an open question on how the graph topology ultimately bounds a quantum walk's mixing performance, and that of any stochastic local evolution. The results highlight that speedups in mixing and transport phenomena are not necessarily diagnostic of quantum effects, although superdiffusive spreading is more prominent with quantum walks. The general simulating LMC construction may lead to large memory, yet we show that for the main graphs under study (i.e., lattices) this memory can be brought down to the same size employed in the quantum walks proposed in the literature.

Simulation of quantum walks and fast mixing with classical processes

Ticozzi, Francesco
2018

Abstract

We compare discrete-time quantum walks on graphs to their natural classical equivalents, which we argue are lifted Markov chains (LMCs), that is, classical Markov chains with added memory. We show that LMCs can simulate the mixing behavior of any quantum walk, under a commonly satisfied invariance condition. This allows us to answer an open question on how the graph topology ultimately bounds a quantum walk's mixing performance, and that of any stochastic local evolution. The results highlight that speedups in mixing and transport phenomena are not necessarily diagnostic of quantum effects, although superdiffusive spreading is more prominent with quantum walks. The general simulating LMC construction may lead to large memory, yet we show that for the main graphs under study (i.e., lattices) this memory can be brought down to the same size employed in the quantum walks proposed in the literature.
2018
File in questo prodotto:
File Dimensione Formato  
PhysRevA.98.032115.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 537.02 kB
Formato Adobe PDF
537.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3279496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact