α-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD); its deposits are found as amyloid fibrils in Lewy bodies and Lewy neurites, the histopathological hallmarks of PD. Amyloid fibrillation is a progressive polymerization path starting from peptide/protein misfolding and proceeding through the transient growth of oligomeric intermediates widely considered as the most toxic species. Consequently, a promising approach of intervention against PD might be preventing α-synuclein build-up, misfolding and aggregation. A possible strategy involves the use of small molecules able to slow down the aggregation process or to alter oligomer conformation favouring the growth of non-pathogenic species. Here, we show that oleuropein aglycone (OleA), the main olive oil polyphenol, exhibits anti-amyloidogenic power in vitro by interacting with, and stabilizing, α-synuclein monomers thus hampering the growth of on-pathway oligomers and favouring the growth of stable and harmless aggregates with no tendency to evolve into other cytotoxic amyloids. We investigated the molecular basis of such interference by both biophysical techniques and limited proteolysis; aggregate morphology was monitored by electron microscopy. We also found that OleA reduces the cytotoxicity of α-synuclein aggregates by hindering their binding to cell membrane components and preventing the resulting oxidative damage to cells.

Oleuropein aglycone stabilizes the monomeric α-synuclein and favours the growth of non-toxic aggregates

PALAZZI, LUANA;BISELLO, GIOVANNI;STEFANI, MASSIMO;De Laureto, Patrizia Polverino
2018

Abstract

α-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD); its deposits are found as amyloid fibrils in Lewy bodies and Lewy neurites, the histopathological hallmarks of PD. Amyloid fibrillation is a progressive polymerization path starting from peptide/protein misfolding and proceeding through the transient growth of oligomeric intermediates widely considered as the most toxic species. Consequently, a promising approach of intervention against PD might be preventing α-synuclein build-up, misfolding and aggregation. A possible strategy involves the use of small molecules able to slow down the aggregation process or to alter oligomer conformation favouring the growth of non-pathogenic species. Here, we show that oleuropein aglycone (OleA), the main olive oil polyphenol, exhibits anti-amyloidogenic power in vitro by interacting with, and stabilizing, α-synuclein monomers thus hampering the growth of on-pathway oligomers and favouring the growth of stable and harmless aggregates with no tendency to evolve into other cytotoxic amyloids. We investigated the molecular basis of such interference by both biophysical techniques and limited proteolysis; aggregate morphology was monitored by electron microscopy. We also found that OleA reduces the cytotoxicity of α-synuclein aggregates by hindering their binding to cell membrane components and preventing the resulting oxidative damage to cells.
2018
File in questo prodotto:
File Dimensione Formato  
Palazzi_et_al-2018-Scientific_Reports.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3279368
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 56
  • OpenAlex ND
social impact