Proton inelastic scattering of Ni72,74 and Zn76,80 ions at energies around 235 MeV/nucleon was performed at the Radioactive Isotope Beam Factory and studied using γ-ray spectroscopy. Angular integrated cross sections for direct inelastic scattering to the 21+ and 41+ states were measured. The Jeukenne-Lejeune-Mahaux folding model, extended beyond 200 MeV, was used together with neutron and proton densities stemming from quasiparticle random-phase approximation (QRPA) calculations to interpret the experimental cross sections and to infer neutron to proton matrix element ratios. In addition, coupled-channels calculations with a phenomenological potential were used to determine deformation lengths. For the Ni isotopes, correlations favor neutron excitations, thus conserving the Z=28 gap. A dominance of proton excitation, on the other hand, is observed in the Zn isotopes, pointing to the conservation of the N=50 gap approaching Ni78. These results are in agreement with QRPA and large-scale shell-model calculations.
Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target
Lenzi, S. M.
Data Curation
;PERON, CLAUDIOMembro del Collaboration Group
;
2018
Abstract
Proton inelastic scattering of Ni72,74 and Zn76,80 ions at energies around 235 MeV/nucleon was performed at the Radioactive Isotope Beam Factory and studied using γ-ray spectroscopy. Angular integrated cross sections for direct inelastic scattering to the 21+ and 41+ states were measured. The Jeukenne-Lejeune-Mahaux folding model, extended beyond 200 MeV, was used together with neutron and proton densities stemming from quasiparticle random-phase approximation (QRPA) calculations to interpret the experimental cross sections and to infer neutron to proton matrix element ratios. In addition, coupled-channels calculations with a phenomenological potential were used to determine deformation lengths. For the Ni isotopes, correlations favor neutron excitations, thus conserving the Z=28 gap. A dominance of proton excitation, on the other hand, is observed in the Zn isotopes, pointing to the conservation of the N=50 gap approaching Ni78. These results are in agreement with QRPA and large-scale shell-model calculations.File | Dimensione | Formato | |
---|---|---|---|
PRC.97.044315_18_Cortes.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.