Factorized sparse approximate inverse (FSAI) preconditioners are robust algorithms for symmetric positive matrices, which are particularly attractive in a parallel computational environment because of their inherent and almost perfect scalability. Their parallel degree is even redundant with respect to the actual capabilities of the current computational architectures. In this work, we present two new approaches for FSAI preconditioners with the aim of improving the algorithm effectiveness by adding some sequentiality to the native formulation. The first one, denoted as block tridiagonal FSAI, is based on a block tridiagonal factorization strategy, whereas the second one, domain decomposition FSAI, is built by reordering the matrix graph according to a multilevel k‐way partitioning method followed by a bandwidth minimization algorithm. We test these preconditioners by solving a set of symmetric positive definite problems arising from different engineering applications. The results are evaluated in terms of performance, scalability, and robustness, showing that both strategies lead to faster convergent schemes regarding the number of iterations and total computational time in comparison with the native FSAI with no significant loss in the algorithmic parallel degree.

Multilevel approaches for FSAI preconditioning

PALUDETTO MAGRI, VICTOR ANTONIO
;
FRANCESCHINI, ANDREA;Ferronato, Massimiliano;Janna, Carlo
2018

Abstract

Factorized sparse approximate inverse (FSAI) preconditioners are robust algorithms for symmetric positive matrices, which are particularly attractive in a parallel computational environment because of their inherent and almost perfect scalability. Their parallel degree is even redundant with respect to the actual capabilities of the current computational architectures. In this work, we present two new approaches for FSAI preconditioners with the aim of improving the algorithm effectiveness by adding some sequentiality to the native formulation. The first one, denoted as block tridiagonal FSAI, is based on a block tridiagonal factorization strategy, whereas the second one, domain decomposition FSAI, is built by reordering the matrix graph according to a multilevel k‐way partitioning method followed by a bandwidth minimization algorithm. We test these preconditioners by solving a set of symmetric positive definite problems arising from different engineering applications. The results are evaluated in terms of performance, scalability, and robustness, showing that both strategies lead to faster convergent schemes regarding the number of iterations and total computational time in comparison with the native FSAI with no significant loss in the algorithmic parallel degree.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3278560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact