Here, we present IDNet, a user authentication framework from smartphone-acquired motion signals. Its goal is to recognize a target user from their way of walking, using the accelerometer and gyroscope (inertial) signals provided by a commercial smartphone worn in the front pocket of the user’s trousers. IDNet features several innovations including: (i) a robust and smartphone-orientation-independent walking cycle extraction block, (ii) a novel feature extractor based on convolutional neural networks, (iii) a one-class support vector machine to classify walking cycles, and the coherent integration of these into (iv) a multi-stage authentication technique. IDNet is the first system that exploits a deep learning approach as universal feature extractors for gait recognition, and that combines classification results from subsequent walking cycles into a multi-stage decision making framework. Experimental results show the superiority of our approach against state-of-the-art techniques, leading to misclassification rates (either false negatives or positives) smaller than 0.15% with fewer than five walking cycles. Design choices are discussed and motivated throughout, assessing their impact on the user authentication performance.

IDNet: Smartphone-based gait recognition with convolutional neural networks

Gadaleta, Matteo;Rossi, Michele
2018

Abstract

Here, we present IDNet, a user authentication framework from smartphone-acquired motion signals. Its goal is to recognize a target user from their way of walking, using the accelerometer and gyroscope (inertial) signals provided by a commercial smartphone worn in the front pocket of the user’s trousers. IDNet features several innovations including: (i) a robust and smartphone-orientation-independent walking cycle extraction block, (ii) a novel feature extractor based on convolutional neural networks, (iii) a one-class support vector machine to classify walking cycles, and the coherent integration of these into (iv) a multi-stage authentication technique. IDNet is the first system that exploits a deep learning approach as universal feature extractors for gait recognition, and that combines classification results from subsequent walking cycles into a multi-stage decision making framework. Experimental results show the superiority of our approach against state-of-the-art techniques, leading to misclassification rates (either false negatives or positives) smaller than 0.15% with fewer than five walking cycles. Design choices are discussed and motivated throughout, assessing their impact on the user authentication performance.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0031320317303485-main.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri   Richiedi una copia
1606.03238.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3270156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 182
  • ???jsp.display-item.citation.isi??? 153
  • OpenAlex ND
social impact