The oxidation of biogenic volatile organic compounds (VOCs) represents a substantial source of secondary organic aerosol (SOA) in the atmosphere. In this study, we present online measurements of the molecular constituents formed in the gas and aerosol phases during α-pinene oxidation in the Cambridge Atmospheric Simulation Chamber (CASC). We focus on characterising the performance of extractive electrospray ionisation (EESI) mass spectrometry (MS) for particle analysis. A number of new aspects of EESI-MS performance are considered here. We show that relative quantification of organic analytes can be achieved in mixed organic–inorganic particles. A comprehensive assignment of mass spectra for α-pinene derived SOA in both positive and negative ion modes is obtained using an ultra-high-resolution mass spectrometer. We compare these online spectra to conventional offline ESI-MS spectra and find good agreement in terms of the compounds identified, without the need for complex sample work-up procedures. Under our experimental conditions, EESI-MS signals arise only from particle-phase analytes. High-time-resolution (7 min) EESI-MS spectra are compared with simulations from the near-explicit Master Chemical Mechanism (MCM) for a range of reaction conditions. We show that MS peak abundances scale with modelled concentrations for condensable products (pinonic acid, pinic acid, OH-pinonic acid). Relative quantification is achieved throughout SOA formation as the composition, size and mass (5–2400 µg m−3) of particles is evolving. This work provides a robust demonstration of the advantages of EESI-MS for chamber studies over offline ESI-MS (time resolution, relative quantification) and over "hard" online techniques (molecular information).
Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry
Giorio, Chiara;
2017
Abstract
The oxidation of biogenic volatile organic compounds (VOCs) represents a substantial source of secondary organic aerosol (SOA) in the atmosphere. In this study, we present online measurements of the molecular constituents formed in the gas and aerosol phases during α-pinene oxidation in the Cambridge Atmospheric Simulation Chamber (CASC). We focus on characterising the performance of extractive electrospray ionisation (EESI) mass spectrometry (MS) for particle analysis. A number of new aspects of EESI-MS performance are considered here. We show that relative quantification of organic analytes can be achieved in mixed organic–inorganic particles. A comprehensive assignment of mass spectra for α-pinene derived SOA in both positive and negative ion modes is obtained using an ultra-high-resolution mass spectrometer. We compare these online spectra to conventional offline ESI-MS spectra and find good agreement in terms of the compounds identified, without the need for complex sample work-up procedures. Under our experimental conditions, EESI-MS signals arise only from particle-phase analytes. High-time-resolution (7 min) EESI-MS spectra are compared with simulations from the near-explicit Master Chemical Mechanism (MCM) for a range of reaction conditions. We show that MS peak abundances scale with modelled concentrations for condensable products (pinonic acid, pinic acid, OH-pinonic acid). Relative quantification is achieved throughout SOA formation as the composition, size and mass (5–2400 µg m−3) of particles is evolving. This work provides a robust demonstration of the advantages of EESI-MS for chamber studies over offline ESI-MS (time resolution, relative quantification) and over "hard" online techniques (molecular information).File | Dimensione | Formato | |
---|---|---|---|
32 - Gallimore et al 2017 - EESI.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.