Frequent checks on livestock’s body growth can help reducing problems related to cow infertility or other welfare implications, and recognizing health’s anomalies. In the last ten years, optical methods have been proposed to extract information on various parameters while avoiding direct contact with animals’ body, generally causes stress. This research aims to evaluate a new monitoring system, which is suitable to frequently check calves and cow’s growth through a three-dimensional analysis of their bodies’ portions. The innovative system is based on multiple acquisitions from a low cost Structured Light Depth-Camera (Microsoft Kinect™ v1). The metrological performance of the instrument is proved through an uncertainty analysis and a proper calibration procedure. The paper reports application of the depth camera for extraction of different body parameters. Expanded uncertainty ranging between 3 and 15 mm is reported in the case of ten repeated measurements. Coefficients of determination R2> 0.84 and deviations lower than 6% from manual measurements where in general detected in the case of head size, hips distance, withers to tail length, chest girth, hips, and withers height. Conversely, lower performances where recognized in the case of animal depth (R2 = 0.74) and back slope (R2 = 0.12).

A Feasibility Study on the Use of a Structured Light Depth-Camera for Three-Dimensional Body Measurements of Dairy Cows in Free-Stall Barns

Andrea Pezzuolo;Luigi Sartori;Francesco Marinello
2018

Abstract

Frequent checks on livestock’s body growth can help reducing problems related to cow infertility or other welfare implications, and recognizing health’s anomalies. In the last ten years, optical methods have been proposed to extract information on various parameters while avoiding direct contact with animals’ body, generally causes stress. This research aims to evaluate a new monitoring system, which is suitable to frequently check calves and cow’s growth through a three-dimensional analysis of their bodies’ portions. The innovative system is based on multiple acquisitions from a low cost Structured Light Depth-Camera (Microsoft Kinect™ v1). The metrological performance of the instrument is proved through an uncertainty analysis and a proper calibration procedure. The paper reports application of the depth camera for extraction of different body parameters. Expanded uncertainty ranging between 3 and 15 mm is reported in the case of ten repeated measurements. Coefficients of determination R2> 0.84 and deviations lower than 6% from manual measurements where in general detected in the case of head size, hips distance, withers to tail length, chest girth, hips, and withers height. Conversely, lower performances where recognized in the case of animal depth (R2 = 0.74) and back slope (R2 = 0.12).
2018
File in questo prodotto:
File Dimensione Formato  
sensors-18-00673.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3265225
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 55
  • OpenAlex ND
social impact