We investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) attaining theoretically perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating by placing it near either a metallic or a dielectric mirror, thus achieving very good agreement between numerical predictions and experimental results.

Graphene-based perfect optical absorbers harnessing guided mode resonances

DE CEGLIA, DOMENICO
2015

Abstract

We investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) attaining theoretically perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating by placing it near either a metallic or a dielectric mirror, thus achieving very good agreement between numerical predictions and experimental results.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3262924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 98
  • ???jsp.display-item.citation.isi??? 92
  • OpenAlex ND
social impact