A crucial computational task for relational and network data is the “link prediction problem” which allows for example to discover unknown interactions between proteins to explain the mechanism of a disease in biological networks, or to suggest novel products for a customer in a e-commerce recommendation system. Most link prediction approaches however do not effectively exploit the contextual information available in the neighborhood of each edge. Here we propose to cast the problem as a binary classification task over the union of the pair of subgraphs located at the endpoints of each edge. We model the classification task using a support vector machine endowed with an efficient graph kernel and achieve state-of-the-art results on several benchmark datasets.

Joint neighborhood subgraphs link prediction

Tran-Van, Dinh;Sperduti, Alessandro;
2017

Abstract

A crucial computational task for relational and network data is the “link prediction problem” which allows for example to discover unknown interactions between proteins to explain the mechanism of a disease in biological networks, or to suggest novel products for a customer in a e-commerce recommendation system. Most link prediction approaches however do not effectively exploit the contextual information available in the neighborhood of each edge. Here we propose to cast the problem as a binary classification task over the union of the pair of subgraphs located at the endpoints of each edge. We model the classification task using a support vector machine endowed with an efficient graph kernel and achieve state-of-the-art results on several benchmark datasets.
2017
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
24th International Conference on Neural Information Processing, ICONIP 2017
9783319700861
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3260050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact