The process e(+)e(-) -> pi(+)pi(-)2 pi(0)gamma is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb(-1) of data collected around a centerof- mass energy of root s = 10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel's contribution to the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon is calculated as (g(mu)(pi+ pi-2 pi 0) - 2)/2 = (17.9 +/- 0.1(stat) +/- 0.6(syst)) x 10(-10) in the energy range 0.85 GeV < ECM < 1.8 GeV. In the same energy range, the impact on the running of the fine-structure constant at the Z(0)-pole is determined as Delta alpha(pi+ pi-2 pi 0) (M-Z(2)) = (4.44 +/- 0.02(stat) +/- 0.14(syst)) x 10(-4). Furthermore, intermediate resonances are studied and especially the cross section of the process e(+)e(-) -> omega pi(0) -> pi(+)pi(-)2 pi(0) is measured.
Measurement of the e(+)e(-) -> pi(+)pi(-)pi(0)pi(0) cross section using initial-state radiation at BABAR
Gaz, A.;Margoni, M.;Posocco, M.;Simi, G.;Simonetto, F.;Stroili, R.;
2017
Abstract
The process e(+)e(-) -> pi(+)pi(-)2 pi(0)gamma is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb(-1) of data collected around a centerof- mass energy of root s = 10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel's contribution to the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon is calculated as (g(mu)(pi+ pi-2 pi 0) - 2)/2 = (17.9 +/- 0.1(stat) +/- 0.6(syst)) x 10(-10) in the energy range 0.85 GeV < ECM < 1.8 GeV. In the same energy range, the impact on the running of the fine-structure constant at the Z(0)-pole is determined as Delta alpha(pi+ pi-2 pi 0) (M-Z(2)) = (4.44 +/- 0.02(stat) +/- 0.14(syst)) x 10(-4). Furthermore, intermediate resonances are studied and especially the cross section of the process e(+)e(-) -> omega pi(0) -> pi(+)pi(-)2 pi(0) is measured.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.96.092009(1).pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.