We present an offender theory that is symmetric in offender and offended group and also a replacement theorem that does not need that the groups in question are abelian. We then use this theory to define variations of Thompson and Baumann subgroups and prove a general Baumann argument. (C) 2017 Elsevier Inc. All rights reserved.

General offender theory

Parmeggiani, G.;
2018

Abstract

We present an offender theory that is symmetric in offender and offended group and also a replacement theorem that does not need that the groups in question are abelian. We then use this theory to define variations of Thompson and Baumann subgroups and prove a general Baumann argument. (C) 2017 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3257640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact