The general trend toward more intelligent energy-aware ac drives is driving the development of new motor topologies and advanced model-based control techniques. Among the candidates, pure reluctance and anisotropic permanent magnet motors are gaining popularity, despite their complex structure. The availability of accurate mathematical models that describe these motors is essential to the design of any model-based advanced control. This paper focuses on the relations between currents and flux linkages, which are obtained through innovative radial basis function neural networks. These special drive-oriented neural networks take as inputs the motor voltages and currents, returning as output the motor flux linkages, inclusive of any nonlinearity and cross-coupling effect. The theoretical foundations of the radial basis function networks, the design hints, and a commented series of experimental results on a real laboratory prototype are included in this paper. The simple structure of the neural network fits for implementation on standard drives. The online training and tracking will be the next steps in field programmable gate array based control systems.
Magnetic Modelling of Synchronous Reluctance and Internal Permanent Magnet Motors Using Radial Basis Function Networks
Ortombina, L.
;Tinazzi, F.;Zigliotto, M.
2018
Abstract
The general trend toward more intelligent energy-aware ac drives is driving the development of new motor topologies and advanced model-based control techniques. Among the candidates, pure reluctance and anisotropic permanent magnet motors are gaining popularity, despite their complex structure. The availability of accurate mathematical models that describe these motors is essential to the design of any model-based advanced control. This paper focuses on the relations between currents and flux linkages, which are obtained through innovative radial basis function neural networks. These special drive-oriented neural networks take as inputs the motor voltages and currents, returning as output the motor flux linkages, inclusive of any nonlinearity and cross-coupling effect. The theoretical foundations of the radial basis function networks, the design hints, and a commented series of experimental results on a real laboratory prototype are included in this paper. The simple structure of the neural network fits for implementation on standard drives. The online training and tracking will be the next steps in field programmable gate array based control systems.File | Dimensione | Formato | |
---|---|---|---|
ALL_17-TIE-0871.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Preprint (submitted version)
Licenza:
Accesso gratuito
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.