We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distributions of photon emission times, previously measured for bacterial colonies of Vibrio jasicida, a luminescent bacterium belonging to the Harveyi clade, growing in a highly drying environment. A distinctive and novel feature of the proposed model is bioluminescence 'quenching' after a given time elapsed from activation. Using an advanced fitting procedure based on the simulated annealing algorithm, we are able to infer from the experimental observations the biochemical parameters used in the model. Such parameters are in good agreement with the literature data. As a further result, we find that, at least in our experimental conditions, light emission in bioluminescent bacteria appears to originate from a subtle balance between colony growth and quorum activation due to autoinducers diffusion, with the two phenomena occurring on the same time scale. This finding is consistent with a negative feedback mechanism previously reported for Vibrio harveyi.
Bacterial bioluminescence onset and quenching: A dynamical model for a quorum sensing-mediated property
Seno, Flavio;Trovato, Antonio
2017
Abstract
We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distributions of photon emission times, previously measured for bacterial colonies of Vibrio jasicida, a luminescent bacterium belonging to the Harveyi clade, growing in a highly drying environment. A distinctive and novel feature of the proposed model is bioluminescence 'quenching' after a given time elapsed from activation. Using an advanced fitting procedure based on the simulated annealing algorithm, we are able to infer from the experimental observations the biochemical parameters used in the model. Such parameters are in good agreement with the literature data. As a further result, we find that, at least in our experimental conditions, light emission in bioluminescent bacteria appears to originate from a subtle balance between colony growth and quorum activation due to autoinducers diffusion, with the two phenomena occurring on the same time scale. This finding is consistent with a negative feedback mechanism previously reported for Vibrio harveyi.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.