The present paper aims at investigating the condensation process inside minichannels, at low mass fluxes, where bigger discrepancies from conventional channels can be expected. At high mass flux, the condensation in minichannels is expected to be shear stress dominated. Therefore, models originally developed for conventional channels could still do a good job in predicting the heat transfer coefficient. When the mass flow rate decreases, the condensation process in minichannels starts to display differences with the same process in macro-channels. With the purpose of investigating condensation at these operating conditions, new experimental data are here reported and compared with data already published in the literature. In particular, heat transfer coefficients have been measured during R134a and R1234ze(E) condensation inside circular and square cross section minichannels at mass flux ranging between 65 and 200 kg m−2 s−1. These new data are compared with those of R32, R717, R290, R152a to show the effect of channel shape and fluid properties and to assess the applicability of correlations developed for macroscale condensation. For this purpose, a new criterion based on the Weber number is presented to decide when the macroscale condensation correlation can be applied. The present experimental data are also compared against three-dimensional Volume of Fluid (VOF) simulations of condensation in minichannels with circular and square cross section. This comparison allows to get an insight into the process and evaluate the main heat transfer mechanisms.

Effects of geometry and fluid properties during condensation in minichannels: experiments and simulations

Toninelli, Paolo;Bortolin, Stefano;Azzolin, Marco;Del Col, Davide
2019

Abstract

The present paper aims at investigating the condensation process inside minichannels, at low mass fluxes, where bigger discrepancies from conventional channels can be expected. At high mass flux, the condensation in minichannels is expected to be shear stress dominated. Therefore, models originally developed for conventional channels could still do a good job in predicting the heat transfer coefficient. When the mass flow rate decreases, the condensation process in minichannels starts to display differences with the same process in macro-channels. With the purpose of investigating condensation at these operating conditions, new experimental data are here reported and compared with data already published in the literature. In particular, heat transfer coefficients have been measured during R134a and R1234ze(E) condensation inside circular and square cross section minichannels at mass flux ranging between 65 and 200 kg m−2 s−1. These new data are compared with those of R32, R717, R290, R152a to show the effect of channel shape and fluid properties and to assess the applicability of correlations developed for macroscale condensation. For this purpose, a new criterion based on the Weber number is presented to decide when the macroscale condensation correlation can be applied. The present experimental data are also compared against three-dimensional Volume of Fluid (VOF) simulations of condensation in minichannels with circular and square cross section. This comparison allows to get an insight into the process and evaluate the main heat transfer mechanisms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3252303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
  • OpenAlex ND
social impact