Due to growing concern for the genetic erosion of local varieties, four of the main corn landraces historically grown in Veneto (Italy) — Sponcio, Marano, Biancoperla and Rosso Piave — were characterized in this work. A total of 197 phenotypically representative plants collected from field populations were genotyped at 10 SSR marker loci, which were regularly distributed across the 10 genetic linkage groups and were previously characterized for high polymorphism information content (PIC), on average equal to 0.5. The population structure analysis based on this marker set revealed that 144 individuals could be assigned with strong ancestry association (>90%) to four distinct clusters, corresponding to the landraces used in this study. The remaining 53 individuals, mainly from Sponcio and Marano, showed admixed ancestry. Among all possible pairwise comparisons of individual plants, these two landraces exhibited the highest mean genetic similarity (approximately 67%), as graphically confirmed through ordination analyses based on PCoA centroids and UPGMA trees. Our findings support the hypothesis of direct gene flow between Sponcio and Marano, likely promoted by the geographical proximity of these two landraces and their overlapping cultivation areas. Conversely, consistent with its production mainly confined to the eastern area of the region, Rosso Piave scored the lowest genetic similarity (<59%) to the other three landraces and firmly grouped (with average membership of 89%) in a separate cluster, forming a molecularly distinguishable gene pool. The elite inbred B73 used as tester line scored very low estimates of genetic similarity (on average <45%) with all the landraces. Finally, although Biancoperla was represented at K = 4 by a single subgroup with individual memberships higher than 80% in almost all cases (57 of 62), when analyzed with an additional level of population structure for K = 6, it appeared to be entirely (100%) constituted by individuals with admixed ancestry. This suggests that the current population could be the result of repeated hybridization events between the two accessions currently bred in Veneto. The genetic characterization of these heritage landraces should prove very useful for monitoring and preventing further genetic erosion and genetic introgression, thus preserving their gene pools, phenotypic identities and qualitative traits for the future.

Venetian local corn (Zea mays L.) germplasm: Disclosing the genetic anatomy of old landraces suited for typical cornmeal mush production.

Palumbo, Fabio
Membro del Collaboration Group
;
Galla, Giulio
Membro del Collaboration Group
;
Barcaccia, Gianni
2017

Abstract

Due to growing concern for the genetic erosion of local varieties, four of the main corn landraces historically grown in Veneto (Italy) — Sponcio, Marano, Biancoperla and Rosso Piave — were characterized in this work. A total of 197 phenotypically representative plants collected from field populations were genotyped at 10 SSR marker loci, which were regularly distributed across the 10 genetic linkage groups and were previously characterized for high polymorphism information content (PIC), on average equal to 0.5. The population structure analysis based on this marker set revealed that 144 individuals could be assigned with strong ancestry association (>90%) to four distinct clusters, corresponding to the landraces used in this study. The remaining 53 individuals, mainly from Sponcio and Marano, showed admixed ancestry. Among all possible pairwise comparisons of individual plants, these two landraces exhibited the highest mean genetic similarity (approximately 67%), as graphically confirmed through ordination analyses based on PCoA centroids and UPGMA trees. Our findings support the hypothesis of direct gene flow between Sponcio and Marano, likely promoted by the geographical proximity of these two landraces and their overlapping cultivation areas. Conversely, consistent with its production mainly confined to the eastern area of the region, Rosso Piave scored the lowest genetic similarity (<59%) to the other three landraces and firmly grouped (with average membership of 89%) in a separate cluster, forming a molecularly distinguishable gene pool. The elite inbred B73 used as tester line scored very low estimates of genetic similarity (on average <45%) with all the landraces. Finally, although Biancoperla was represented at K = 4 by a single subgroup with individual memberships higher than 80% in almost all cases (57 of 62), when analyzed with an additional level of population structure for K = 6, it appeared to be entirely (100%) constituted by individuals with admixed ancestry. This suggests that the current population could be the result of repeated hybridization events between the two accessions currently bred in Veneto. The genetic characterization of these heritage landraces should prove very useful for monitoring and preventing further genetic erosion and genetic introgression, thus preserving their gene pools, phenotypic identities and qualitative traits for the future.
2017
File in questo prodotto:
File Dimensione Formato  
Palumbo et al. (2017) Diversity 9 32.pdf

accesso aperto

Descrizione: Palumbo et al. (2017) Diversity 9 Art. 32
Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 7.32 MB
Formato Adobe PDF
7.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3252087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact