The soil management adopted in vineyard inter-rows has a great influence on soil hydraulic properties, and, consequently, on runoff at the field scale. Conventional management with tillage is adopted by vine-growers to improve the soil water recharge during winter. Nevertheless, this practice is known to increase runoff and soil erosion in steep areas, especially in mechanized vineyards, thus grass cover is adopted to reduce these negative impacts. The year-round values of field-saturated hydraulic conductivity and of the field-scale runoff were measured in vineyard plots from November, 2012 to March, 2016 in the Alto Monferrato vine-growing area (Piedmont, NW Italy). Field-saturated hydraulic conductivity values were obtained by 110 infiltration measurements. The tests were carried out by adopting the Simplified Falling Head methodology in two adjacent vineyards plots, where inter-rows were managed with conventional tillage (CT) and grass cover (GC), respectively. The runoff, the soil temperature and the soil water content in the two plots have also been recorded. As it was expected, the tillage increased the field-saturated hydraulic conductivity with respect to the plot with permanent grass cover. However, this effect was only temporary, since a decrease in field-saturated hydraulic conductivity was observed as a consequence of cumulative precipitation and tractor passages after the tillage operations. The field-saturated hydraulic conductivity ranged between 9 and 9119 mm h-1 in the tilled plot and between 4 and 1775 mm h-1 in the plot with grass cover. The response of the plots to precipitation events, in terms of runoff also varied considerably. Generally, during most of the events, the runoff in the tilled plot resulted higher (up to nearly 20 times) than in the grassed one. The grass cover was less effective in occasion of large precipitation events during the wet seasons than in other months.

Year-round variability of field-saturated hydraulic conductivity and runoff in tilled and grassed vineyards

Pitacco, Andrea;
2017

Abstract

The soil management adopted in vineyard inter-rows has a great influence on soil hydraulic properties, and, consequently, on runoff at the field scale. Conventional management with tillage is adopted by vine-growers to improve the soil water recharge during winter. Nevertheless, this practice is known to increase runoff and soil erosion in steep areas, especially in mechanized vineyards, thus grass cover is adopted to reduce these negative impacts. The year-round values of field-saturated hydraulic conductivity and of the field-scale runoff were measured in vineyard plots from November, 2012 to March, 2016 in the Alto Monferrato vine-growing area (Piedmont, NW Italy). Field-saturated hydraulic conductivity values were obtained by 110 infiltration measurements. The tests were carried out by adopting the Simplified Falling Head methodology in two adjacent vineyards plots, where inter-rows were managed with conventional tillage (CT) and grass cover (GC), respectively. The runoff, the soil temperature and the soil water content in the two plots have also been recorded. As it was expected, the tillage increased the field-saturated hydraulic conductivity with respect to the plot with permanent grass cover. However, this effect was only temporary, since a decrease in field-saturated hydraulic conductivity was observed as a consequence of cumulative precipitation and tractor passages after the tillage operations. The field-saturated hydraulic conductivity ranged between 9 and 9119 mm h-1 in the tilled plot and between 4 and 1775 mm h-1 in the plot with grass cover. The response of the plots to precipitation events, in terms of runoff also varied considerably. Generally, during most of the events, the runoff in the tilled plot resulted higher (up to nearly 20 times) than in the grassed one. The grass cover was less effective in occasion of large precipitation events during the wet seasons than in other months.
File in questo prodotto:
File Dimensione Formato  
ChemEngTrans_058-739.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Pubblico Dominio (CC 1.0)
Dimensione 675.74 kB
Formato Adobe PDF
675.74 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3251050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact