We systematically investigate the zero temperature phase diagram of bosons interacting via dipolar interactions in three dimensions in free space via path integral Monte Carlo simulations with a few hundreds of particles and periodic boundary conditions based on the worm algorithm. Upon increasing the strength of the dipolar interaction and at sufficiently high densities we find a wide region where filaments are stabilized along the direction of the external field. Most interestingly by computing the superfluid fraction we conclude that the superfluidity is anisotropic and is greatly suppressed along the orthogonal plane. Finally, we perform simulations at finite temperature confirming the stability of the filaments against thermal fluctuations and provide an estimate of the superfluid fraction in the weak coupling limit in the framework of the Landau two-fluid model.
Superfluid Filaments of Dipolar Bosons in Free Space
Cappellaro, Alberto;Salasnich, Luca;MACRÌ, TOMMASO
2017
Abstract
We systematically investigate the zero temperature phase diagram of bosons interacting via dipolar interactions in three dimensions in free space via path integral Monte Carlo simulations with a few hundreds of particles and periodic boundary conditions based on the worm algorithm. Upon increasing the strength of the dipolar interaction and at sufficiently high densities we find a wide region where filaments are stabilized along the direction of the external field. Most interestingly by computing the superfluid fraction we conclude that the superfluidity is anisotropic and is greatly suppressed along the orthogonal plane. Finally, we perform simulations at finite temperature confirming the stability of the filaments against thermal fluctuations and provide an estimate of the superfluid fraction in the weak coupling limit in the framework of the Landau two-fluid model.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.119.215302.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
671.65 kB
Formato
Adobe PDF
|
671.65 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.