On a droplet-based Labs-on-Chip (LoC) device, tiny volumes of fluids, so-called droplets, flow in channels of micrometer scale. The droplets contain chemical/biological samples that are processed by different modules on the LoC. In current solutions, an LoC is a single-purpose device that is designed for a specific application, which limits its flexibility. In order to realize a multi-purpose system, different modules are interconnected in a microfluidic network - yielding so-called Networked LoCs (NLoCs). In NLoCs, the droplets are routed to the desired modules by exploiting hydrodynamic forces. A well established topology for NLoCs are ring networks. However, the addressing schemes provided so far in the literature only allow to address multiple modules by re-injecting the droplet at the source every time, which is a very complex task and increases the risk of ruining the sample. In this work, we address this issue by revising the design of the network nodes, which include the modules. A novel configuration allows the droplet to undergo processing several times in cascade by different modules with a single injection. Simulating the trajectory of the droplets across the network confirmed the validity of our approach.
Addressing multiple nodes in networked labs-on-chips without payload re-injection
Biral, Andrea
;Zanella, Andrea
;
2017
Abstract
On a droplet-based Labs-on-Chip (LoC) device, tiny volumes of fluids, so-called droplets, flow in channels of micrometer scale. The droplets contain chemical/biological samples that are processed by different modules on the LoC. In current solutions, an LoC is a single-purpose device that is designed for a specific application, which limits its flexibility. In order to realize a multi-purpose system, different modules are interconnected in a microfluidic network - yielding so-called Networked LoCs (NLoCs). In NLoCs, the droplets are routed to the desired modules by exploiting hydrodynamic forces. A well established topology for NLoCs are ring networks. However, the addressing schemes provided so far in the literature only allow to address multiple modules by re-injecting the droplet at the source every time, which is a very complex task and increases the risk of ruining the sample. In this work, we address this issue by revising the design of the network nodes, which include the modules. A novel configuration allows the droplet to undergo processing several times in cascade by different modules with a single injection. Simulating the trajectory of the droplets across the network confirmed the validity of our approach.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.