The gas filters of OSIRIS/Wide Angle Camera (WAC) on board Rosetta spacecraft allowed to study the gaseous emissions of the inner coma of comet 67P/Churyumov-Gerasimenko. OH, NH, CN, NH2 and OI gas species have been monitored between January and September 2015, i.e. from 2.47 AU pre-perihelion, to 1.37 AU post-perihelion, allowing the study of seasonal variations. Each gas sequence covers slightly more than one comet rotation period allowing also the study of diurnal changes. We measured the gas column density between 1 and 3 km from the nucleus limb in the sunward direction. Results will be presented on the gas diurnal light curves and on the long-term variations such as the dependence and correlation with time, heliocentric distance, range, phase angle and sub-solar point. Gas ratios are studied searching for evidence of any compositional change with time and orbital evolution. We searched for connections between particular "active zones" on the nucleus surface. This study will be helpful in connecting ground based observations of 67P with Rosetta in situ observations.

Diurnal and seasonal variations of gas emissions in the inner coma of comet 67P/Churyumov-Gerasimenko observed with OSIRIS/Rosetta

La Forgia, F.;Lazzarin, M.;Bertini, I.;Penasa, L.;Naletto, G.;Massironi, M.;Ferri, F.;Frattin, E.;Ferrari, S.;Barbieri, C.
2017

Abstract

The gas filters of OSIRIS/Wide Angle Camera (WAC) on board Rosetta spacecraft allowed to study the gaseous emissions of the inner coma of comet 67P/Churyumov-Gerasimenko. OH, NH, CN, NH2 and OI gas species have been monitored between January and September 2015, i.e. from 2.47 AU pre-perihelion, to 1.37 AU post-perihelion, allowing the study of seasonal variations. Each gas sequence covers slightly more than one comet rotation period allowing also the study of diurnal changes. We measured the gas column density between 1 and 3 km from the nucleus limb in the sunward direction. Results will be presented on the gas diurnal light curves and on the long-term variations such as the dependence and correlation with time, heliocentric distance, range, phase angle and sub-solar point. Gas ratios are studied searching for evidence of any compositional change with time and orbital evolution. We searched for connections between particular "active zones" on the nucleus surface. This study will be helpful in connecting ground based observations of 67P with Rosetta in situ observations.
2017
European Planetary Science Congress 2017
European Planetary Science Congress 2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3247298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact