Background: Heart Rate Variability (HRV) is reduced both in depression and in coronary heart disease (CHD) suggesting common pathophysiological mechanisms for the two disorders. Within CHD, cardiac surgery patients (CSP) with postoperative depression are at greater risk of adverse cardiac events. Therefore, CSP would especially benefit from depression early diagnosis. Here we tested whether HRV-multi-feature analysis discriminates CSP with or without depression and provides an effective estimation of symptoms severity. Methods: Thirty-one patients admitted to cardiac rehabilitation after first-time cardiac surgery were recruited. Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression Scale (CES-D). HRV features in time, frequency, and nonlinear domains were extracted from 5-min-ECG recordings at rest and used as predictors of "least absolute shrinkage and selection" (LASSO) operator regression model to estimate patients' CES-D score and to predict depressive state. Results: The model significantly predicted the CES-D score in all subjects (the total explained variance of CES-D score was 89.93%). Also it discriminated depressed and non-depressed CSP with 86.75% accuracy. Seven of the ten most informative metrics belonged to non-linear-domain. Limitations: A higher number of patients evaluated also with a structured clinical interview would help to generalize the present findings. Discussion: To our knowledge this is the first study using a multi-feature approach to evaluate depression in CSP. The high informative power of HRV-nonlinear metrics suggests their possible pathophysiological role both in depression and in CHD. The high-accuracy of the algorithm at single-subject level opens to its translational use as screening tool in clinical practice.
Assessing mood symptoms through heartbeat dynamics: An HRV study on cardiosurgical patients
Gentili, C;Messerotti Benvenuti, S;Palomba, D;
2017
Abstract
Background: Heart Rate Variability (HRV) is reduced both in depression and in coronary heart disease (CHD) suggesting common pathophysiological mechanisms for the two disorders. Within CHD, cardiac surgery patients (CSP) with postoperative depression are at greater risk of adverse cardiac events. Therefore, CSP would especially benefit from depression early diagnosis. Here we tested whether HRV-multi-feature analysis discriminates CSP with or without depression and provides an effective estimation of symptoms severity. Methods: Thirty-one patients admitted to cardiac rehabilitation after first-time cardiac surgery were recruited. Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression Scale (CES-D). HRV features in time, frequency, and nonlinear domains were extracted from 5-min-ECG recordings at rest and used as predictors of "least absolute shrinkage and selection" (LASSO) operator regression model to estimate patients' CES-D score and to predict depressive state. Results: The model significantly predicted the CES-D score in all subjects (the total explained variance of CES-D score was 89.93%). Also it discriminated depressed and non-depressed CSP with 86.75% accuracy. Seven of the ten most informative metrics belonged to non-linear-domain. Limitations: A higher number of patients evaluated also with a structured clinical interview would help to generalize the present findings. Discussion: To our knowledge this is the first study using a multi-feature approach to evaluate depression in CSP. The high informative power of HRV-nonlinear metrics suggests their possible pathophysiological role both in depression and in CHD. The high-accuracy of the algorithm at single-subject level opens to its translational use as screening tool in clinical practice.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.