In this paper we propose a new method for human action categorization by using an effective combination of a new 3D gradient descriptor with an optic flow descriptor, to represent spatio-temporal interest points. These points are used to represent video sequences using a bag of spatio-temporal visual words, following the successful results achieved in object and scene classification. We extensively test our approach on the standard KTH and Weizmann actions datasets, showing its validity and good performance. Experimental results outperform state-of-the-art methods, without requiring fine parameter tuning.

Recognizing Human Actions by Fusing Spatio-temporal Appearance and Motion Descriptors

BALLAN, LAMBERTO;
2009

Abstract

In this paper we propose a new method for human action categorization by using an effective combination of a new 3D gradient descriptor with an optic flow descriptor, to represent spatio-temporal interest points. These points are used to represent video sequences using a bag of spatio-temporal visual words, following the successful results achieved in object and scene classification. We extensively test our approach on the standard KTH and Weizmann actions datasets, showing its validity and good performance. Experimental results outperform state-of-the-art methods, without requiring fine parameter tuning.
2009
Proc. of IEEE International Conference on Image Processing (ICIP)
IEEE International Conference on Image Processing (ICIP)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3242017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 20
  • OpenAlex ND
social impact