Where previous reviews on content-based image retrieval emphasize what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems (i.e., image tag assignment, refinement, and tag-based image retrieval) is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, that is, estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this article introduces a two-dimensional taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison with the state of the art, a new experimental protocol is presented, with training sets containing 10,000, 100,000, and 1 million images, and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.
Socializing the semantic gap: A comparative survey on image tag assignment, refinement, and retrieval
BALLAN, LAMBERTO;
2016
Abstract
Where previous reviews on content-based image retrieval emphasize what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems (i.e., image tag assignment, refinement, and tag-based image retrieval) is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, that is, estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this article introduces a two-dimensional taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison with the state of the art, a new experimental protocol is presented, with training sets containing 10,000, 100,000, and 1 million images, and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.File | Dimensione | Formato | |
---|---|---|---|
1503.08248.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Creative commons
Dimensione
3.16 MB
Formato
Adobe PDF
|
3.16 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.