Additive manufacturing involves a layer-by-layer build-up of mechanical parts and it is a manufacturing technology that can be adopted with different engineering metal materials like steels, aluminium and titanium alloys. Aim of the present investigation is to analyse the influence of the build orientation on static and axial fatigue properties of maraging steel specimens manufactured by Direct Metal Laser Sintering (DMLS) of EOS metal powders. After manufacturing, some of the specimens were subjected to age hardening heat treatment (490 °C for 6 hours, followed by air cooling). Both heat treated and as-manufactured specimens have been built at 0° as well as at 90° orientation with respect to the specimen’s axis. Analyses of the crack initiation point are performed in order to investigate the fatigue failure mechanisms. Finally, the fatigue strength of the additively manufactured specimens was compared with that exhibited by vacuum melted specimens of the same steel.

Influence of build orientation on static and axial fatigue properties of Maraging steel specimens produced by additive manufacturing

MENEGHETTI, GIOVANNI;RIGON, DANIELE;DABALA', MANUELE
2017

Abstract

Additive manufacturing involves a layer-by-layer build-up of mechanical parts and it is a manufacturing technology that can be adopted with different engineering metal materials like steels, aluminium and titanium alloys. Aim of the present investigation is to analyse the influence of the build orientation on static and axial fatigue properties of maraging steel specimens manufactured by Direct Metal Laser Sintering (DMLS) of EOS metal powders. After manufacturing, some of the specimens were subjected to age hardening heat treatment (490 °C for 6 hours, followed by air cooling). Both heat treated and as-manufactured specimens have been built at 0° as well as at 90° orientation with respect to the specimen’s axis. Analyses of the crack initiation point are performed in order to investigate the fatigue failure mechanisms. Finally, the fatigue strength of the additively manufactured specimens was compared with that exhibited by vacuum melted specimens of the same steel.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3240740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 51
  • OpenAlex ND
social impact