The replacement policies known as MIN and OPT are optimal for a two-level memory hierarchy. The computation of the cache content for these policies requires the off-line knowledge of the entire address trace. However, the stack distance of a given access, that is, the smallest capacity of a cache for which that access results in a hit, is independent of future accesses and can be computed on-line. Off-line and on-line algorithms to compute the stack distance in time O(V) per access have been known for several decades, where V denotes the number of distinct addresses within the trace. The off-line time bound was recently improved to O(√V log V). This paper introduces the Critical Stack Algorithm for the online computation of the stack distance of MIN and OPT, in time O(log V) per access. The result exploits a novel analysis of properties of OPT and data structures based on balanced binary trees. A corresponding Ω(log V) lower bound is derived by a reduction from element distinctness; this bound holds in a variety of models of computation and applies even to the off-line simulation of just one cache capacity.

Optimal on-line computation of stack distances for MIN and OPT

BILARDI, GIANFRANCO;
2017

Abstract

The replacement policies known as MIN and OPT are optimal for a two-level memory hierarchy. The computation of the cache content for these policies requires the off-line knowledge of the entire address trace. However, the stack distance of a given access, that is, the smallest capacity of a cache for which that access results in a hit, is independent of future accesses and can be computed on-line. Off-line and on-line algorithms to compute the stack distance in time O(V) per access have been known for several decades, where V denotes the number of distinct addresses within the trace. The off-line time bound was recently improved to O(√V log V). This paper introduces the Critical Stack Algorithm for the online computation of the stack distance of MIN and OPT, in time O(log V) per access. The result exploits a novel analysis of properties of OPT and data structures based on balanced binary trees. A corresponding Ω(log V) lower bound is derived by a reduction from element distinctness; this bound holds in a variety of models of computation and applies even to the off-line simulation of just one cache capacity.
2017
ACM International Conference on Computing Frontiers 2017, CF 2017
14th ACM International Conference on Computing Frontiers, CF 2017
9781450344876
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3240408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact