Iron oxide nanomaterials are considered promising tools for improved therapeutic efficacy and diagnostic applications in biomedicine. Accordingly, engineered iron oxide nanomaterials are increasingly proposed in biomedicine, and the interdisciplinary researches involving physics, chemistry, biology (nanotechnology) and medicine have led to exciting developments in the last decades. The progresses of the development of magnetic nanoparticles with tailored physico-chemical and surface properties produced a variety of clinically relevant applications, spanning from magnetic resonance imaging (MRI), drug delivery, magnetic hyperthermia, to in vitro diagnostics. Notwithstanding the well-known conventional synthetic procedures and their wide use, recent advances in the synthetic methods open the door to new generations of naked iron oxide nanoparticles possessing peculiar surface chemistries, suitable for other competitive biomedical applications. New abilities to rationally manipulate iron oxides and their physical, chemical, and biological properties, allow the emersion of additional possibilities for designing novel nanomaterials for theranostic applications.

New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles

MAGRO, MASSIMILIANO;BARATELLA, DAVIDE;BONAIUTO, EMANUELA;DE ALMEIDA ROGER, JESSICA;VIANELLO, FABIO
2018

Abstract

Iron oxide nanomaterials are considered promising tools for improved therapeutic efficacy and diagnostic applications in biomedicine. Accordingly, engineered iron oxide nanomaterials are increasingly proposed in biomedicine, and the interdisciplinary researches involving physics, chemistry, biology (nanotechnology) and medicine have led to exciting developments in the last decades. The progresses of the development of magnetic nanoparticles with tailored physico-chemical and surface properties produced a variety of clinically relevant applications, spanning from magnetic resonance imaging (MRI), drug delivery, magnetic hyperthermia, to in vitro diagnostics. Notwithstanding the well-known conventional synthetic procedures and their wide use, recent advances in the synthetic methods open the door to new generations of naked iron oxide nanoparticles possessing peculiar surface chemistries, suitable for other competitive biomedical applications. New abilities to rationally manipulate iron oxides and their physical, chemical, and biological properties, allow the emersion of additional possibilities for designing novel nanomaterials for theranostic applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3238306
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 49
  • OpenAlex ND
social impact