An innovative core-shell nanocarrier, combining the magnetism of surface active maghemite nanoparticles (SAMNs, the core) and tannic acid (TA, the shell) was self-assembled by simple incubation in water. Due to the drastic reorganization of SAMN surface, the prepared magnetic nanocarrier (SAMN@TA) resulted as one of the most robust nanomaterial bearing TA to date. Nevertheless, the ferric tannates network, constituting the SAMN@TA shell, and the free tannic acid display comparable chemical behavior. The antimicrobial properties of SAMN@TA were tested on Listeria monocytogenes in comparison with free TA, showing similar bacteriostatic effects at relatively low concentrations. Besides the preservation of the TA inhibitory activity toward L. monocytogenes, the possibility of being magnetically removed leaving no residues into the matrix makes this nanocarrier an innovative processing aid for surface treatments. Thus, SAMN@TA can be used as an effective, low-cost and environmentally friendly antimicrobial nanomaterial for the food industry applications.

Antimicrobial and magnetically removable tannic acid nanocarrier: A processing aid for Listeria monocytogenes treatment for food industry applications

DE ALMEIDA ROGER, JESSICA;MAGRO, MASSIMILIANO;SPAGNOLO, SILVIA;BONAIUTO, EMANUELA;BARATELLA, DAVIDE;FASOLATO, LUCA
;
VIANELLO, FABIO
2018

Abstract

An innovative core-shell nanocarrier, combining the magnetism of surface active maghemite nanoparticles (SAMNs, the core) and tannic acid (TA, the shell) was self-assembled by simple incubation in water. Due to the drastic reorganization of SAMN surface, the prepared magnetic nanocarrier (SAMN@TA) resulted as one of the most robust nanomaterial bearing TA to date. Nevertheless, the ferric tannates network, constituting the SAMN@TA shell, and the free tannic acid display comparable chemical behavior. The antimicrobial properties of SAMN@TA were tested on Listeria monocytogenes in comparison with free TA, showing similar bacteriostatic effects at relatively low concentrations. Besides the preservation of the TA inhibitory activity toward L. monocytogenes, the possibility of being magnetically removed leaving no residues into the matrix makes this nanocarrier an innovative processing aid for surface treatments. Thus, SAMN@TA can be used as an effective, low-cost and environmentally friendly antimicrobial nanomaterial for the food industry applications.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3238305
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact