Endometriosis, an estrogen-dependent chronic gynecological disease in women of reproductive age, is characterized by a systemic inflammation status involving also red blood cells (RBCs). In this study, we evaluated how the protein oxidative status could be involved in the worsening of RBC conditions due to dapsone intake in endometriotic women in potential treatment for skin or infection diseases. Blood samples from two groups of volunteers, control group (CG) and endometriosis patient group (PG), were analyzed for their content of band 3 tyrosine phosphorylation (Tyr-P) and high molecular weight aggregate (HMWA) in membranes, and glutathione (GSH) content and carbonic anhydrase (CA) activity in cytosol. In endometriotic patients, RBC showed the highest level of oxidative-related alterations both in membrane and cytosol. More interestingly, the addition of dapsone hydroxylamine (DDS-NHOH) could induce further increase of both membranes and cytosol markers, with an enhancement of CA activity reaching about 66% of the total cell enzyme amount. In conclusion, in PG the systemic inflammatory status leads to the inability of counteracting adjunctive oxidative stress, with a potential involvement of CA-related pathologies, such as glaucoma. Hence, the importance of the evaluation of therapeutic approaches worsening oxidative imbalance present in PG RBC is underlined.
Dapsone hydroxylamine-mediated alterations in human red blood cells from endometriotic patients
ANDRISANI, ALESSANDRA;DONA', GABRIELLA;SABBADIN, CHIARA;DALL'ACQUA, STEFANO;TIBALDI, ELENA;ROVERI, ANTONELLA;BOSELLO TRAVAIN, VALENTINA;BRUNATI, ANNA MARIA;AMBROSINI, GUIDO;RAGAZZI, EUGENIO;ARMANINI, DECIO;BORDIN, LUCIANA
2017
Abstract
Endometriosis, an estrogen-dependent chronic gynecological disease in women of reproductive age, is characterized by a systemic inflammation status involving also red blood cells (RBCs). In this study, we evaluated how the protein oxidative status could be involved in the worsening of RBC conditions due to dapsone intake in endometriotic women in potential treatment for skin or infection diseases. Blood samples from two groups of volunteers, control group (CG) and endometriosis patient group (PG), were analyzed for their content of band 3 tyrosine phosphorylation (Tyr-P) and high molecular weight aggregate (HMWA) in membranes, and glutathione (GSH) content and carbonic anhydrase (CA) activity in cytosol. In endometriotic patients, RBC showed the highest level of oxidative-related alterations both in membrane and cytosol. More interestingly, the addition of dapsone hydroxylamine (DDS-NHOH) could induce further increase of both membranes and cytosol markers, with an enhancement of CA activity reaching about 66% of the total cell enzyme amount. In conclusion, in PG the systemic inflammatory status leads to the inability of counteracting adjunctive oxidative stress, with a potential involvement of CA-related pathologies, such as glaucoma. Hence, the importance of the evaluation of therapeutic approaches worsening oxidative imbalance present in PG RBC is underlined.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.