One of the major challenges in human genetics is to identify functional effects of coding and non-coding single nucleotide variants (SNVs). In the past, several methods have been developed to identify disease-related single amino acid changes but only few tools are able to score the impact of non-coding variants. Among the most popular algorithms, CADD and FATHMM predict the effect of SNVs in non-coding regions combining sequence conservation with several functional features derived from the ENCODE project data. Thus, to run CADD or FATHMM locally, the installation process requires to download a large set of pre-calculated information. To facilitate the process of variant annotation we develop PhD-SNPg, a new easy-to-install and lightweight machine learning method that depends only on sequence-based features. Despite this, PhD-SNPg performs similarly or better than more complex methods. This makes PhD-SNPg ideal for quick SNV interpretation, and as benchmark for tool development.

PhD-SNPg: a webserver and lightweight tool for scoring single nucleotide variants

Fariselli, Piero
Supervision
2017

Abstract

One of the major challenges in human genetics is to identify functional effects of coding and non-coding single nucleotide variants (SNVs). In the past, several methods have been developed to identify disease-related single amino acid changes but only few tools are able to score the impact of non-coding variants. Among the most popular algorithms, CADD and FATHMM predict the effect of SNVs in non-coding regions combining sequence conservation with several functional features derived from the ENCODE project data. Thus, to run CADD or FATHMM locally, the installation process requires to download a large set of pre-calculated information. To facilitate the process of variant annotation we develop PhD-SNPg, a new easy-to-install and lightweight machine learning method that depends only on sequence-based features. Despite this, PhD-SNPg performs similarly or better than more complex methods. This makes PhD-SNPg ideal for quick SNV interpretation, and as benchmark for tool development.
2017
File in questo prodotto:
File Dimensione Formato  
CapriottiFariselliNar2017_gkx369.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Creative commons
Dimensione 533.63 kB
Formato Adobe PDF
533.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3233475
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 159
  • ???jsp.display-item.citation.isi??? 151
  • OpenAlex ND
social impact