This paper reviews studies published in the international scientific literature evaluating the influence of genetically based metabolic polymorphisms on biological indicators of genotoxic risk in environmental or occupational exposure. Exposures due to life style (i.e. diet or smoking) were not considered. Indicators are subdivided into internal dose indicators (concentration of the substance or its metabolites in biological fluids, urinary mutagenicity, adducts of hemoglobin, plasma proteins and DNA), and early biological effects (chromosome aberrations, sister chromatid exchanges, micronuclei, COMET assay, HPRT mutants). The metabolic genotypes (or phenotypes) examined by various authors are: ALDH2 (aldehyde dehydrogenase), CYP (P450 cytochrome) 1AI, CYP1A2, CYP2E1, CYP2D6, EPHX (epoxidohydrolase), NAT2 (N-acetyl transferase), NQO1 (NAD(P)H: kinone oxidoreductase), PON1 (paraoxonase), GST (glutathione S-transferase) M1, GSTT1 and GSTP1. In more than half the studies (52 out of 96), no influence of genotype was found in the biological indicator. This may be due either to the poor sensitivity of the indicator used, or to low exposure. In studies examining the effect of genotype on the indicator, the biological plausibility of the result was evaluated, i.e., whether the effect is consistent with the type of enzymatic activity expressed. Four studies reported not very reliable results and suggest either the unfavourable influence of genotype GSTM1 with high detoxifying activity, or enzymatic activity poorly involved in the metabolism of the xenobiotics in question (NAT2 in the case of PAH). As regards urinary metabolites of genotoxic agents, eight studies reported the modulating effect of genotype. The urinary excretion of mercapturic acids was greater in subjects with high GST activity. In exposure to PAH, urinary 1-pyrenol and PAH metabolites turn out to be significantly influenced by genotypes CYP1A1 or GSTM1 null; in exposure to aromatic amines, the influence of NAT2 on exposure indicators (levels of acetylated and non-acetylated metabolites) was confirmed. Exposure to benzene led to an increase in t-t-MA in some genotypes, although experimental verification is still necessary. As regards urinary mutagenicity, the effect of genotype GSTM1 null is reported, and of the same genotype combined with NAT2 slow, in non-smoking individuals subjected to high exposure to PAH and in cigarette-smoking/coke-oven workers. Lastly, the determination of urinary metabolites in monitoring exposure to genotoxic substances, provides sufficient evidence that genetically based metabolic polymorphisms must be taken into account in the future. There is still little evidence regarding the importance of genotype on the level of protein adducts in environmental and occupational exposure. A relatively large number of publications (22) dealt with DNA adduct levels in PAH exposure. In 18 studies, the biological indicator clearly increases with respect to values in control subjects. Of these studies, seven reported the influence of GSTM1 null on DNA adducts and, of the five studies which also examined genotype CYP1A1, four reported the influence on DNA adduct level of genotype CYP1A1, alone or in combination with GSTM1 null. It therefore seems as if the unfavourable association for the activating/detoxifying metabolism of PAH is a risk factor for the formation of PAH-DNA adducts. Most publications (25 out of 41; 61%) dealing with metabolic polymorphisms in effect indicators (cytogenetic markers, COMET assay, HPRT mutants) did not report any increase in the indicator due to exposure to the genotoxic agents studied. These indicators of genotoxic damage, including mainly the frequency of HPRT mutants (100%), Mn (90%) and the COMET assay (67%), are not sufficiently sensitive in revealing exposure, confirming that they are not particularly suitable for measuring exposure to genotoxic substances in occupational or environmental exposures. It is therefore difficult to assess the influence of metabolic genotypes by means of this type of biological indicator. The few positive results reported for SCE in occupational studies mentioned the influence of genotype ALDH2, either alone or in combination with genotype CYP2E1 in exposure to CVM, or in combination with GSTM1 null in exposure to epichlorohydrin. For CA the results showed unfavourable combinations of genotypes CYP2E1, GSTM1 and PON1 in exposure to pesticides, and GSTM1 null in combination with NAT2 slow in exposure to urban air. All the remaining studies on the effect of genotype on biological indicators of cytogenetic damage reported negative results.
[Biomarkers of gentotoxic risk and metabolic polymorphism]
PAVANELLO, SOFIA;CLONFERO, ERMINIO
2000
Abstract
This paper reviews studies published in the international scientific literature evaluating the influence of genetically based metabolic polymorphisms on biological indicators of genotoxic risk in environmental or occupational exposure. Exposures due to life style (i.e. diet or smoking) were not considered. Indicators are subdivided into internal dose indicators (concentration of the substance or its metabolites in biological fluids, urinary mutagenicity, adducts of hemoglobin, plasma proteins and DNA), and early biological effects (chromosome aberrations, sister chromatid exchanges, micronuclei, COMET assay, HPRT mutants). The metabolic genotypes (or phenotypes) examined by various authors are: ALDH2 (aldehyde dehydrogenase), CYP (P450 cytochrome) 1AI, CYP1A2, CYP2E1, CYP2D6, EPHX (epoxidohydrolase), NAT2 (N-acetyl transferase), NQO1 (NAD(P)H: kinone oxidoreductase), PON1 (paraoxonase), GST (glutathione S-transferase) M1, GSTT1 and GSTP1. In more than half the studies (52 out of 96), no influence of genotype was found in the biological indicator. This may be due either to the poor sensitivity of the indicator used, or to low exposure. In studies examining the effect of genotype on the indicator, the biological plausibility of the result was evaluated, i.e., whether the effect is consistent with the type of enzymatic activity expressed. Four studies reported not very reliable results and suggest either the unfavourable influence of genotype GSTM1 with high detoxifying activity, or enzymatic activity poorly involved in the metabolism of the xenobiotics in question (NAT2 in the case of PAH). As regards urinary metabolites of genotoxic agents, eight studies reported the modulating effect of genotype. The urinary excretion of mercapturic acids was greater in subjects with high GST activity. In exposure to PAH, urinary 1-pyrenol and PAH metabolites turn out to be significantly influenced by genotypes CYP1A1 or GSTM1 null; in exposure to aromatic amines, the influence of NAT2 on exposure indicators (levels of acetylated and non-acetylated metabolites) was confirmed. Exposure to benzene led to an increase in t-t-MA in some genotypes, although experimental verification is still necessary. As regards urinary mutagenicity, the effect of genotype GSTM1 null is reported, and of the same genotype combined with NAT2 slow, in non-smoking individuals subjected to high exposure to PAH and in cigarette-smoking/coke-oven workers. Lastly, the determination of urinary metabolites in monitoring exposure to genotoxic substances, provides sufficient evidence that genetically based metabolic polymorphisms must be taken into account in the future. There is still little evidence regarding the importance of genotype on the level of protein adducts in environmental and occupational exposure. A relatively large number of publications (22) dealt with DNA adduct levels in PAH exposure. In 18 studies, the biological indicator clearly increases with respect to values in control subjects. Of these studies, seven reported the influence of GSTM1 null on DNA adducts and, of the five studies which also examined genotype CYP1A1, four reported the influence on DNA adduct level of genotype CYP1A1, alone or in combination with GSTM1 null. It therefore seems as if the unfavourable association for the activating/detoxifying metabolism of PAH is a risk factor for the formation of PAH-DNA adducts. Most publications (25 out of 41; 61%) dealing with metabolic polymorphisms in effect indicators (cytogenetic markers, COMET assay, HPRT mutants) did not report any increase in the indicator due to exposure to the genotoxic agents studied. These indicators of genotoxic damage, including mainly the frequency of HPRT mutants (100%), Mn (90%) and the COMET assay (67%), are not sufficiently sensitive in revealing exposure, confirming that they are not particularly suitable for measuring exposure to genotoxic substances in occupational or environmental exposures. It is therefore difficult to assess the influence of metabolic genotypes by means of this type of biological indicator. The few positive results reported for SCE in occupational studies mentioned the influence of genotype ALDH2, either alone or in combination with genotype CYP2E1 in exposure to CVM, or in combination with GSTM1 null in exposure to epichlorohydrin. For CA the results showed unfavourable combinations of genotypes CYP2E1, GSTM1 and PON1 in exposure to pesticides, and GSTM1 null in combination with NAT2 slow in exposure to urban air. All the remaining studies on the effect of genotype on biological indicators of cytogenetic damage reported negative results.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.