Using some recent results on subperiodic trigonometric interpolation and quadrature, and the theory of admissible meshes for multivariate polynomial approximation, we study product Gaussian quadrature, hyperinterpolation and interpolation on some regions of dS,d ≥ 2. Such regions include caps, zones, slices and more generally spherical rectangles defined on S2 by longitude and (co)latitude (geographic rectangles). We provide the corresponding Matlab codes and discuss several numerical examples on S2
Polynomial approximation and quadrature on geographic rectangles
SOMMARIVA, ALVISE;VIANELLO, MARCO
2017
Abstract
Using some recent results on subperiodic trigonometric interpolation and quadrature, and the theory of admissible meshes for multivariate polynomial approximation, we study product Gaussian quadrature, hyperinterpolation and interpolation on some regions of dS,d ≥ 2. Such regions include caps, zones, slices and more generally spherical rectangles defined on S2 by longitude and (co)latitude (geographic rectangles). We provide the corresponding Matlab codes and discuss several numerical examples on S2File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
georect.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
597.8 kB
Formato
Adobe PDF
|
597.8 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.