Biogenic alkenes, which are among the most abundant volatile organic compounds in the atmosphere, are readily oxidized by ozone. Characterizing the reactivity and kinetics of the first-generation products of these reactions, carbonyl oxides (often named Criegee intermediates), is essential in defining the oxidation pathways of organic compounds in the atmosphere but is highly challenging due to the short lifetime of these zwitterions. Here, we report the development of a novel online method to quantify atmospherically relevant Criegee intermediates (CIs) in the gas phase by stabilization with spin traps and analysis with proton-transfer reaction mass spectrometry. Ozonolysis of alpha-pinene has been chosen as a proof-of-principle model system. To determine unambiguously the structure of the spin trap adducts with alpha-pinene CIs, the reaction was tested in solution, and reaction products were characterized with high-resolution mass spectrometry, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopy. DFT calculations show that addition of the Criegee intermediate to the DMPO spin trap, leading to the formation of a six-membered ring adduct, occurs through a very favorable pathway and that the product is significantly more stable than the reactants, supporting the experimental characterization. A flow tube set up has been used to generate spin trap adducts with alpha-pinene CIs in the gas phase. We demonstrate that spin trap adducts with alpha-pinene CIs also form in the gas phase and that they are stable enough to be detected with online mass spectrometry. This new technique offers for the first time a method to characterize highly reactive and atmospherically relevant radical intermediates in situ.

Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection

GIORIO, CHIARA
;
TAMPIERI, FRANCESCO;BARBON, ANTONIO
Investigation
;
TOFFOLETTI, ANTONIO;TAPPARO, ANDREA;
2017

Abstract

Biogenic alkenes, which are among the most abundant volatile organic compounds in the atmosphere, are readily oxidized by ozone. Characterizing the reactivity and kinetics of the first-generation products of these reactions, carbonyl oxides (often named Criegee intermediates), is essential in defining the oxidation pathways of organic compounds in the atmosphere but is highly challenging due to the short lifetime of these zwitterions. Here, we report the development of a novel online method to quantify atmospherically relevant Criegee intermediates (CIs) in the gas phase by stabilization with spin traps and analysis with proton-transfer reaction mass spectrometry. Ozonolysis of alpha-pinene has been chosen as a proof-of-principle model system. To determine unambiguously the structure of the spin trap adducts with alpha-pinene CIs, the reaction was tested in solution, and reaction products were characterized with high-resolution mass spectrometry, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopy. DFT calculations show that addition of the Criegee intermediate to the DMPO spin trap, leading to the formation of a six-membered ring adduct, occurs through a very favorable pathway and that the product is significantly more stable than the reactants, supporting the experimental characterization. A flow tube set up has been used to generate spin trap adducts with alpha-pinene CIs in the gas phase. We demonstrate that spin trap adducts with alpha-pinene CIs also form in the gas phase and that they are stable enough to be detected with online mass spectrometry. This new technique offers for the first time a method to characterize highly reactive and atmospherically relevant radical intermediates in situ.
File in questo prodotto:
File Dimensione Formato  
JACS_Criegee_OK.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3227992
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact