The history of protein kinase CK2 is crowded with paradoxes and unanticipated findings. Named after a protein (casein) that is not among its physiological substrates, CK2 remained in search of its targets for more than two decades after its discovery in 1954, but it later came to be one of the most pleiotropic protein kinases. Being active in the absence of phosphorylation and/or specific stimuli, it looks unsuitable to participate in signaling cascades, but its "lateral" implication in a variety of signaling pathways is now soundly documented. At variance with many "onco-kinases", CK2 is constitutively active, and no oncogenic CK2 mutant is known; still high CK2 activity correlates to neoplasia. Its pleiotropy and essential role may cast doubts on the actual "druggability" of CK2; however, a CK2 inhibitor is now in Phase II clinical trials for the treatment of cancer, and cell clones viable in the absence of CK2 are providing information about the mechanism by which cancer becomes addicted to high CK2 levels. A phosphoproteomics analysis of these CK2 null cells suggests that CK2 pleiotropy may be less pronounced than expected and supports the idea that the phosphoproteome generated by this kinase is flexible and not rigidly pre-determined.
Exploring the CK2 paradox: Restless, dangerous, dispensable
FRANCHIN, CINZIA;BORGO, CHRISTIAN;CESARO, LUCA;ARRIGONI, GIORGIO;SALVI, MAURO;
2017
Abstract
The history of protein kinase CK2 is crowded with paradoxes and unanticipated findings. Named after a protein (casein) that is not among its physiological substrates, CK2 remained in search of its targets for more than two decades after its discovery in 1954, but it later came to be one of the most pleiotropic protein kinases. Being active in the absence of phosphorylation and/or specific stimuli, it looks unsuitable to participate in signaling cascades, but its "lateral" implication in a variety of signaling pathways is now soundly documented. At variance with many "onco-kinases", CK2 is constitutively active, and no oncogenic CK2 mutant is known; still high CK2 activity correlates to neoplasia. Its pleiotropy and essential role may cast doubts on the actual "druggability" of CK2; however, a CK2 inhibitor is now in Phase II clinical trials for the treatment of cancer, and cell clones viable in the absence of CK2 are providing information about the mechanism by which cancer becomes addicted to high CK2 levels. A phosphoproteomics analysis of these CK2 null cells suggests that CK2 pleiotropy may be less pronounced than expected and supports the idea that the phosphoproteome generated by this kinase is flexible and not rigidly pre-determined.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.