We prove that in any Sobolev space which is subcritical with respect to the Sobolev Embedding Theorem there exists a closed infinite dimensional linear subspace whose non zero elements are nowhere bounded functions. We also prove the existence of a closed infinite dimensional linear subspace whose non zero elements are nowhere Lq functions for suitable values of q larger than the Sobolev exponent.
Sobolev subspaces of nowhere bounded functions
LAMBERTI, PIER DOMENICO;STEFANI, GIORGIO
2016
Abstract
We prove that in any Sobolev space which is subcritical with respect to the Sobolev Embedding Theorem there exists a closed infinite dimensional linear subspace whose non zero elements are nowhere bounded functions. We also prove the existence of a closed infinite dimensional linear subspace whose non zero elements are nowhere Lq functions for suitable values of q larger than the Sobolev exponent.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
preprint.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
361.46 kB
Formato
Adobe PDF
|
361.46 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.