We prove that in any Sobolev space which is subcritical with respect to the Sobolev Embedding Theorem there exists a closed infinite dimensional linear subspace whose non zero elements are nowhere bounded functions. We also prove the existence of a closed infinite dimensional linear subspace whose non zero elements are nowhere Lq functions for suitable values of q larger than the Sobolev exponent.

Sobolev subspaces of nowhere bounded functions

LAMBERTI, PIER DOMENICO;STEFANI, GIORGIO
2016

Abstract

We prove that in any Sobolev space which is subcritical with respect to the Sobolev Embedding Theorem there exists a closed infinite dimensional linear subspace whose non zero elements are nowhere bounded functions. We also prove the existence of a closed infinite dimensional linear subspace whose non zero elements are nowhere Lq functions for suitable values of q larger than the Sobolev exponent.
2016
File in questo prodotto:
File Dimensione Formato  
preprint.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 361.46 kB
Formato Adobe PDF
361.46 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3227598
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact