Photo-activated processes have been widely recognized as cost-effective and environmentally friendly routes for both renewable energy generation and purification/cleaning technologies. We report herein on a plasma-assisted approach for the synthesis of Fe2O3-TiO2 nanosystems functionalized with Au nanoparticles. Fe2O3 nanostructures were grown by plasma enhanced-chemical vapor deposition, followed by the sequential sputtering of titanium and gold under controlled conditions, and final annealing in air. The target nanosystems were subjected to a thorough multi-technique characterization, in order to elucidate the interrelations between their chemico-physical properties and the processing conditions. Finally, the functional performances were preliminarily investigated in both sunlight-assisted H2O splitting and photocatalytic activity tests in view of self-cleaning applications. The obtained results highlight the possibility of tailoring the system behaviour and candidate the present Fe2O3-TiO2-Au nanosystems as possible multi-functional low-cost platforms for light-activated processes.

Hematite-based nanocomposites for light-activated applications: Synergistic role of TiO2 and Au introduction

CARRARO, GIORGIO;MACCATO, CHIARA;GASPAROTTO, ALBERTO;SADA, CINZIA;BARRECA, DAVIDE
2017

Abstract

Photo-activated processes have been widely recognized as cost-effective and environmentally friendly routes for both renewable energy generation and purification/cleaning technologies. We report herein on a plasma-assisted approach for the synthesis of Fe2O3-TiO2 nanosystems functionalized with Au nanoparticles. Fe2O3 nanostructures were grown by plasma enhanced-chemical vapor deposition, followed by the sequential sputtering of titanium and gold under controlled conditions, and final annealing in air. The target nanosystems were subjected to a thorough multi-technique characterization, in order to elucidate the interrelations between their chemico-physical properties and the processing conditions. Finally, the functional performances were preliminarily investigated in both sunlight-assisted H2O splitting and photocatalytic activity tests in view of self-cleaning applications. The obtained results highlight the possibility of tailoring the system behaviour and candidate the present Fe2O3-TiO2-Au nanosystems as possible multi-functional low-cost platforms for light-activated processes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3226803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
  • OpenAlex ND
social impact