A surface acoustic wave (SAW)-enhanced, surface plasmon resonance (SPR) microfluidic biosensor in which SAW-induced mixing and phase-interrogation grating-coupling SPR are combined in a single lithium niobate lab-on-a-chip is demonstrated. Thiol-polyethylene glycol adsorption and avidin/biotin binding kinetics were monitored by exploiting the high sensitivity of grating-coupling SPR under azimuthal control. A time saturation binding kinetics reduction of 82% and 24% for polyethylene and avidin adsorption was obtained, respectively, due to the fluid mixing enhancement by means of the SAW-generated chaotic advection. These results represent the first implementation of a nanostructured SAW-SPR microfluidic biochip capable of significantly improving the molecule binding kinetics on a single, portable device. In addition, the biochip here proposed is suitable for a great variety of biosensing applications.

A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor

SONATO, AGNESE;RUFFATO, GIANLUCA;GAZZOLA, ENRICO;ROMANATO, FILIPPO
2016

Abstract

A surface acoustic wave (SAW)-enhanced, surface plasmon resonance (SPR) microfluidic biosensor in which SAW-induced mixing and phase-interrogation grating-coupling SPR are combined in a single lithium niobate lab-on-a-chip is demonstrated. Thiol-polyethylene glycol adsorption and avidin/biotin binding kinetics were monitored by exploiting the high sensitivity of grating-coupling SPR under azimuthal control. A time saturation binding kinetics reduction of 82% and 24% for polyethylene and avidin adsorption was obtained, respectively, due to the fluid mixing enhancement by means of the SAW-generated chaotic advection. These results represent the first implementation of a nanostructured SAW-SPR microfluidic biochip capable of significantly improving the molecule binding kinetics on a single, portable device. In addition, the biochip here proposed is suitable for a great variety of biosensing applications.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3221510
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 44
  • OpenAlex ND
social impact