The theory of higher-order asymptotics provides accurate approximations to posterior distributions for a scalar parameter of interest, and to the corresponding tail area, for practical use in Bayesian analysis. The aim of this article is to extend these approximations to pseudo-posterior distributions, e.g., posterior distributions based on a pseudo-likelihood function and a suitable prior, which are proved to be particularly useful when the full likelihood is analytically or computationally infeasible. In particular, from a theoretical point of view, we derive the Laplace approximation for a pseudo-posterior distribution, and for the corresponding tail area, for a scalar parameter of interest, also in the presence of nuisance parameters. From a computational point of view, starting from these higher-order approximations, we discuss the higher-order tail area (HOTA) algorithm useful to approximate marginal posterior distributions, and related quantities. Compared to standard Markov cha...
Higher-order Bayesian approximations for pseudo-posterior distributions
RULI, ERLIS;VENTURA, LAURA
2016
Abstract
The theory of higher-order asymptotics provides accurate approximations to posterior distributions for a scalar parameter of interest, and to the corresponding tail area, for practical use in Bayesian analysis. The aim of this article is to extend these approximations to pseudo-posterior distributions, e.g., posterior distributions based on a pseudo-likelihood function and a suitable prior, which are proved to be particularly useful when the full likelihood is analytically or computationally infeasible. In particular, from a theoretical point of view, we derive the Laplace approximation for a pseudo-posterior distribution, and for the corresponding tail area, for a scalar parameter of interest, also in the presence of nuisance parameters. From a computational point of view, starting from these higher-order approximations, we discuss the higher-order tail area (HOTA) algorithm useful to approximate marginal posterior distributions, and related quantities. Compared to standard Markov cha...Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.