The energetics of the catalytic oxidation of CO on a complex metal oxide are investigated for the first time via density functional theory calculations. The catalyst, Co-doped SrTiO3, is modelled using periodically repeated slabs based on the SrTiO3(100) surface. The comparison of the energy profiles obtained for the pure host and the Co-doped material reveals the actual pathway followed by the reaction, and shows that Co doping enhances the catalytic properties of SrTiO3 by reducing the energy cost for the formation of oxygen vacancies.

Energetics of CO oxidation on lanthanide-free perovskite systems: The case of Co-doped SrTiO3

CARLOTTO, SILVIA;GLISENTI, ANTONELLA;
2016

Abstract

The energetics of the catalytic oxidation of CO on a complex metal oxide are investigated for the first time via density functional theory calculations. The catalyst, Co-doped SrTiO3, is modelled using periodically repeated slabs based on the SrTiO3(100) surface. The comparison of the energy profiles obtained for the pure host and the Co-doped material reveals the actual pathway followed by the reaction, and shows that Co doping enhances the catalytic properties of SrTiO3 by reducing the energy cost for the formation of oxygen vacancies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3217247
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
  • OpenAlex ND
social impact